A Projection Extension Algorithm for Statistical Machine Translation
نویسنده
چکیده
In this paper, we describe a phrase-based unigram model for statistical machine translation that uses a much simpler set of model parameters than similar phrasebased models. The units of translation are blocks – pairs of phrases. During decoding, we use a block unigram model and a word-based trigram language model. During training, the blocks are learned from source interval projections using an underlying high-precision word alignment. The system performance is significantly increased by applying a novel block extension algorithm using an additional highrecall word alignment. The blocks are further filtered using unigram-count selection criteria. The system has been successfully test on a Chinese-English and an ArabicEnglish translation task.
منابع مشابه
A Hybrid Machine Translation System Based on a Monotone Decoder
In this paper, a hybrid Machine Translation (MT) system is proposed by combining the result of a rule-based machine translation (RBMT) system with a statistical approach. The RBMT uses a set of linguistic rules for translation, which leads to better translation results in terms of word ordering and syntactic structure. On the other hand, SMT works better in lexical choice. Therefore, in our sys...
متن کاملA New RSTB Invariant Image Template Matching Based on Log-Spectrum and Modified ICA
Template matching is a widely used technique in many of image processing and machine vision applications. In this paper we propose a new as well as a fast and reliable template matching algorithm which is invariant to Rotation, Scale, Translation and Brightness (RSTB) changes. For this purpose, we adopt the idea of ring projection transform (RPT) of image. In the proposed algorithm, two novel s...
متن کاملA new model for persian multi-part words edition based on statistical machine translation
Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...
متن کاملMixtures of IBM Model 2 ∗
Mixture modelling is a standard pattern classification technique. However, in statistical machine translation, the use of mixture modelling is still unexplored. Two main advantages of the mixture approach are first, its flexibility to find an appropriate tradeoff between model complexity and the amount of training data available and second, its capability to learn specific probability distribut...
متن کاملContinuous-Space Language Models for Statistical Machine Translation
This paper describes an open-source implementation of the so-called continuous space language model and its application to statistical machine translation. The underlying idea of this approach is to attack the data sparseness problem by performing the languagemodel probability estimation in a continuous space. The projection of thewords and the probability estimation are both performed by a mul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003